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ABSTRACT 

We show that  for every r.e. Turing degree a > 0, there is an r.e. degree 

b < a which is not half of a minimal pair in the initial segment [0, a]. 

1. I n t r o d u c t i o n  

Let T~ denote the uppersemilattice of r.e. degrees with operations U (join) and N 

(partial meet). A pair of r.e. degrees a and b form a m i n i m a l  pai r  in T~ if a, b 

0 and a n b = 0 where 0 denotes the degree of the recursive sets. Minimal pairs 

were first constructed by Lachlan [Lac66] and by Yates [Yat65] independently. 
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The construction of minimal pairs was important as it provided the first example 

of a construction of r.e. degrees with the meet operation controlled. As a result, 

it provided an important step in determining which lattices are embeddable in 

~ ,  a problem which still hasn't been completely solved. 

This paper addresses the question of which recursively enumerable degrees 

bound minimal pairs. The first result along these lines is that of Cooper [Coo74] 

who showed that every high r.e. degree bounds a minimal pair. In a paper 

important not only for its results but also for the proof techniques used ("gap- 

cogap" and tree of strategy constructions), Lachlan showed that  there is a nonzero 

r.e. degree which doesn't bound a minimal pair but also that there is a nonzero 

r.e. degree such that every nonzero r.e. degree below it bounds a minimal pair. 

This latter result was improved by Downey and Welch [DW86] and Ambos-Spies 

[AS84] who showed independently that there is a nonzero r.e. degree such that  

every r.e. degree below it is the join of a minimal pair. We extend these results 

in this paper by proving the following theorem. (NOTE: In the Theorem and 

throughout the paper, all sets and degrees are r.e. ) 

THEOREM 1.1: (Va ¢ 0)(35 < a)(Vc < a)[b n c = 0 =~ c = 0]. 

The general program of which this question is part is that of classifying the 

isomorphism types of initial segments of R. While a complete classification is 

beyond present technology and is perhaps too much to expect, there is some hope 

of understanding natural fragments of the theories of such intervals. We see this 

paper as providing information of some importance in this direction. We already 

know that  for instance the problem of embedding finite lattices is significantly 

different for initial segments and all of R. 

The decomposition of R into the definable ideal of the cappable degrees and 

filter of cuppable degrees by Ambos-Spies, Jockusch, Shore and Soare [AJSS84] 

plays a central role in trying to decide the existential-universal theory of Th(R).  

Therefore it is reasonable to expect that  if one restricts oneself to intervals or 

initial segments of R, then one needs to understand the role of the degrees cap- 

pable within the interval or initial segment. Natural questions arise upon taking 

this point of view. Are there cappable degrees relative to each interval/initial 

segment? (The answer is no by Lachlan [Lac79].) Is every degree in an interval 

either cappable or cuppable? (Again the answer is no by Downey [Dow87].) Do 

the cappable degrees in an interval form an ideal in that  interval? (This question 

is open.) Is it possible that  all degrees in an interval are cappable relative to 
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that  interval? The present paper contributes to the program by answering the 

last question negatively. We remark that the results so far seem to indicate that 

understanding the local behaviour of intervals/initial segments of T~, even at the 

most basic level of the ~0 theory, may be a significantly more difficult task than 

understanding that of ~ .  

In the next section, Section 2, we list the requirements necessary to prove 

Theorem 1.1 and describe the construction necessary to meet one requirement. 

In Section 3, we motivate and construct the priority tree for the full construction 

meeting all the requirements. In Section 4 we give the full construction. The 

verification that the construction works occupies Section 5. 

We remark that the priority argument of this paper is of considerable technical 

interest. The construction is a tree of strategies argument of the kind that is now 

quite standard in the study of T/. It has one feature not found in previous con- 

structions however. In this construction, as in other tree strategy constructions, 

we identify a true path along which the requirements of the construction are 

satisfied. However, it will be the case that there are nodes a along this path such 

that  a is not visited in the construction infinitely often and so the requirement 

that  a is at tempting to meet is not met at a. The key point is that somewhere 
on the "genuine true path" (that portion which is visited infinitely often) there is 

a version of the requirement a is attempting to meet. The existence of portions 

of the true path that might be visited only finitely often creates a number of 

interesting technical difficulties, since these portions might be encoding "incor- 

rect information" about the behavior of requirements to the lower priority nodes. 

Thus the lower priority nodes not only need to know what the predecessors of the 

nodes are, but they also need to know the manner by which they were accessed. 

Our terminology is quite standard; a reference is Soare [Soa87]. 

2. T h e  r e q u i r e m e n t s  a n d  bas ic  m o d u l e  

To prove Theorem 1.1, suppose that an r.e. set A is given. We construct an r.e. 

set B so that  B _<T A and so that the following requirements are satisfied for 

every e E N: 

Ne ~e(B) ~ A. 

Re ¢e (A) -- Ue ~ Ue is recursive or there is nonrecursive Q¢ _<T U~, B. 
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Here {~e}eeN is an effective listing of all recursive functionals and {De, Ue}eeN is 

an effective listing of all pairs of functionals ¢ and r.e. sets U. The Requirement 

Re will be met  by meeting the following requirements for every i E N: 

R~,~ ~ ( A )  = U~ =~ U~ is recursive or Qe ~w ge, B and Q~ :~ Wi. 

Besides meeting the requirements l~ , i  and N~, we will ensure that  B _<w A by 

permitting; i.e., if x E B8+1 - Bs, we will have that  (3y <_ x)[y E As+I - A~]. In 

this section, we describe the strategy for meeting a single requirement R~,i. Fix 

e, i. We will drop the subscripts in the ensuing description so that  the requirement 

to be met  may be restated as 

P~ ~(A) = U =~ U is recursive or Q _<w U, B and Q ¢ W. 

Throughout the discussion, if g is a function that  depends on s, g(s) will denote 

the value of g at the beginning of stage s. If  the value of g changes during 

the course of stage s, g(s) denotes the current value of g at that  point in the 

construction. For the sake of describing the action of R,  we define l(s) and ¢(x, s) 

to be the length of agreement and use functions in the computation ¢(A) = U 

at stage s. We will assume that  U is enumerated in such a way so that  if 

x E U~+I - Us, then ¢~(As; x) = 1. This is permissible since we only care about  

those sets U for which ~(A) = U. 

To meet 1~ we will appoint fol lowers  such that  at any stage s, at most two 

followers are a c t i v e  (uncancelled). The active followers at stage s are denoted 

f l ( s )  and f2(s) .  A follower x is r ea l i zed  at stage s i fx  E W~. If f l ( s )  is defined 

then f l ( s )  will be realized and if f2(s)  is defined then f2(s)  will not be realized. 

In addition, we will have that  f l ( s )  < f2(s)  if both f l ( s )  and f2(s)  are defined. 

Active followers may or may not be in g a p s  at any stage. Each follower x will 

have a t r a c e  t(x, s) at each stage s such that  x is active. The traces are for the 

purpose of showing that  Q _<T B. We will say that  R is satisfied at stage s if 

there exists x such that  x E W~ N Q,. 

CONSTRUCTION. Stage s +  1. R requires attention at stage s +  1 if W, oQs = 0 

and one of the following cases applies. If  one does, take the action indicated. 

Case a: There is an active follower x of R such that  x is not in a gap, and 

A~[u(x, s)] ¢ As+l[u(x, s)]. 

Action: Let x be the least such follower. Enumerate t(x, s) into B. Declare that  

x and the active follower of R greater than x (if any) are in a gap. 
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Case b: Not case (a) and if x is the least active follower of R in a gap a t  s tage 

s and tha t  gap was opened at  s '  + 1 < s, then l(s) > l(s'). 

Action: Close the gap of x and the larger active follower, if any. Adopt  the 

subcase below tha t  applies. 

SUBCASE bl :  x is realized and Us[x] ¢ Us, Ix]. 

Action: Enumera t e  x into Q. Cancel any other followers of R .  

SUBCASE b2: Otherwise.  (Either x is not realized or Us[x] -- Us,[x].) Redefine 

t(y, s + 1) for the active followers y of R so tha t  t(y, s + 1) _> u(y, s) and so tha t  

t(y, s + 1) is increasing in y. 

Case c: Not cases (a) or (b) but  y = f2 ( s )  is realized at  s tage s. 

Action: Then  set f l ( s  + 1) = y, and set f2(s  + 1) undefined. (This cancels the 

previous follower f l ( s ) . )  

Case d: Not cases (a), (b), or (c), no follower of R is in a gap at  s, f2 ( s )  is not 

defined, and there is an x > l(s) such tha t  x > y for any previous follower y of 

R. 

Action: Let x = f2(s  + 1). Define t(x, s + 1) >_ max{u(x ,  s), t(y, s) : y <_ x}. 

(Say t (x ,s  + 1) = s + 1.) 

END OF CONSTRUCTION. 

LEMMA 2.1: B <_T A. (In fact, B _<wtt A.) 

Proo~ A number  y is enumera ted  into B at  s tage s + 1 of the construct ion 

only if case (a) applies to y. In this ease y = t(x, s) for a follower x of R and 

As[u(x, s)] ¢ As+l[U(X, s)]. If  y was first appointed as a trace for x a t  s tage 

s' < s, then y = t(x,s')  > u(x,s').  Fur thermore  u(x,s') = u(x,s) ,  since s 

is the first s tage after s '  at  which a gap is opened for x and hence for which 

As[u(x, s)] ¢ A~+l[u(x, s)]. Thus y = t(x, s) > u(x, s) so tha t  B _<T A by simple 

permi t t ing .  | 

LEMMA 2.2: Suppose that ¢(A) = U. Then Q <:T U. (In /act ,  Q _<wtt U.) 

Proo~ The  hypothesis  implies tha t  every gap closes. Enumera t ion  into Q 

happens  only in subcase (bl) .  Thus if x is enumera ted  into Q at  s tage s + 1, it 

is because a gap is closed for x at  s tage s + 1 which was opened at  some stage 
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s' + 1 for which Us,[x] ~ Us[x]. The reduction procedure for Q _<T U is now 

clear, i 

LEMMA 2.3: Suppose that ¢(A) = U. Then Q <_T B.  

Prool~ The hypothesis that ¢(A) = U implies that for any follower x, only 

finitely many gaps can be opened for x and that each of these gaps closes. At the 

stage s that x is appointed as a follower, x receives a trace y = t(x,  s). This trace 

remains appointed to x unless x ceases to become active (in which case x ¢~ Q) 

or x enters a gap. Say x first enters a gap at stage s' + 1. Then t (x ,  s ~) = t (x ,  s) 

is enumerated into B so that using B we can determine that such a stage exists. 

When the gap closes, say at s "+  1, either x is enumerated into Q (and we answer 

accordingly) or x receives a new trace t(x,  s" + 1). Again we can determine from 

t (x,  s" + 1) and B whether x ever enters a gap after s" + 1. We continue this 

process until either x enters Q or x has assigned a trace which never enters B. 

B 

LEMMA 2.4: I f  @(A) = U then U is recursive or Q ~ W .  

Proo£" If Subcase (bl) ever obtains, then Q ~ W and R never again receives 

attention. Thus suppose that subcase (bl) never obtains. Suppose that R has a 

follower y such that y ~ W. Then if y is appointed at stage s + 1, y = f2 ( s  + 1) 

and the values of f l  and f2  never change after stage s +  1 since y is never realized. 

In this case y witnesses that Q ~ W and R receives attention only finitely often 

since we can only open finitely many gaps for y. Suppose then that such a y does 

not exist. Then every follower of R is eventually realized and, by case (d), R has 

infinitely many followers. To recursively determine if z E U, let x be a realized 

follower and s a stage such that x >_ z, x is realized at s, l(s) > x and x is not 

in a gap at stage s. Then Us[x] = U[x]. To see this, notice that for all stages 

t _> s there is a realized follower y > x active at stage t. Let t be least such that  

Ut[x] ~ Ut+I[x]. By the convention on the enumeration of U, l(t) < x so that at 

some stage s' such that s < s' < t, A~,[u(x, s')] ¢ A~,+l[U(X, s')] and a gap was 

opened for y by stage s ~ + 1 that is not closed by t. But when this gap is closed, 

subcase (bl) applies to y. i 

Note that the possible outcomes of the module for 1~ include the following: 

(a) R is satisfied by virtue of W N Q ¢ 0. In this case 1~ receives attention 

only finitely often. 
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(b) There is a single follower x of R such that x has infinitely many gaps. In 

this case O(A) ¢ U. 

(c) lim~ f l ( s )  = co. In this case, if (I)(A) = U, then U is recursive. 

(d) None of the above. Then only finitely many followers are appointed and 

each receives attention only finitely often so that O(A) ¢ U. 

3. The  priority tree 

The construction to meet all the requirements R~,i and N~ is a tree of strategies 

construction. We first construct the priority tree. The priority tree PT  will have 

four different types of nodes. 

The first type of node will be devoted to one of the requirements Re and will 

be used to test the hypothesis (I)~ = U~. We call such a node an Re-node. The 

possible outcomes of this node will be denoted ¢c and f ,  which indicate that  

there are infinitely many or finitely many expansionary stages, respectively. A 

second type of node will be devoted to one of the requirements N~ and will be 

called an N~-node. The possible outcomes of an N~-node are natural numbers 

j with outcome j denoting that the length of agreement of the computations 

mentioned in requirement N~ is j .  A third type of node is an R~,i-node. Such 

a node will be devoted to employing the basic module of Section 2 to meet R~,i. 

The outcomes of such a node are chosen from the set A = {f, g3, g2, gl, w}. The 

outcomes correspond to the following dispositions of the basic module: 

f one of the finitary success outcomes, 
g3 lim~ f l ( s )  = co, 
g2 infinitely many gaps for a single f l  follower, 
gl infinitely many gaps for a single f2  follower, 
w one of the waiting outcomes. 

Finally, we will have T-nodes. Each T-node will be an immediate predecessor of 

an N~-node a and will be used to supply a with a guess as to the recursive injury 

set to (I)~ (B) ~ A in a way to be described later. Each outcome of a T-node f~ 

will be a finite set of nodes v C_ ~ such that T is an Rf,j-node. 

An ordering _< on nodes of the tree is defined lexicographicalty by using the 

following orderings at each level: 
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c ¢ < /  
f < g 3  < : g 2 " ( g l  < w  
j < k  
F < F  ~ 

for outcomes of Re-nodes, 
for outcomes of Re#-nodes, 
for k < j outcomes of N~-nodes, 
if F _D F ~ for outcomes of T-nodes.  

The reader should note that  the order type of the outcomes of an N~-node is 

w*. The last of the above orderings does not determine a linear order; any linear 

order of the outcomes of a T-node satisfying that  property will suffice. We will 

use a <:L T to mean that  a < T and a g T. We think of the tree as growing down 

with the root at the top and outcomes at each level arranged from left to right 

in increasing order of <. Thus a <L V if a is to the left of ~- in this tree. 

We build the tree inductively. For each node a on the tree we will associate 

to a three lists, Ll(cr), L2(a) and L3(a), and we will assign a requirement to a.  

The lists will determine which requirement we assign to a.  List Ll(a)  is the set 

of indices e of requirements Re which still need attention on the path  through a, 

list L2(cr) is the set of indices e of requirements N~ which need such attention, 

and list L3(a) is the set of pairs (e, i) such that  Re,i needs attention. For a 

a node, let a -  denote the immediate predecessor of a on the tree. Also, let A 

denote the empty sequence which is the root node of the tree. The next definition 

defines the lists; it depends on the definition of in ju res  which we give later in 

this section. 

Definition 3.1: Let LI(A) = L2(A) = w and L3(A) = @. Now suppose that  a is a 

node for which L1, L2, and L3 have not yet been defined. Then define the lists 

according to the following cases. (It will not be necessary to define the lists for 

a a T-node.)  

CASE 1: a -  is an Re-node. Then let Ll(a)  --- L l ( a - )  - {e} and Lz(a) -= 

L2(a - ) .  If  o" = a - ^ f  then let L3(a) = L3(a- )  but if a = a - - o o  then let 

L3(a) = L 3 ( a - )  U {(e , i ) :  i • w}. 

CASE 2: a -  is an N~-node. Let Ll(a)  = L l ( a - ) ,  L2(a) = L2(a) - {e}, and 

L3(a) = L3(a - ) .  

CASE 3: ~r- is an Re,~-node. There are two subcases. I f a  = a - ^ w  o r a  = a - A f  

then let Ll((r) = Ll(cr-) ,  L2(a) -- L2(a - ) ,  and L3(a) = L3(a - )  - {(e,i)}.  If 

a = a^gk for some k then Ll(a)  = {f  > e :  f E w}, L2(a) = {f  >__ e: f • w} and 

L3(a) = n 3 ( a - )  tJ { ( f , j ) :  a injures R f , j } -  {(f , j}:  f _> e and j • w}. 
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Having defined the lists, we now assign a requirement to a as follows. Let i be 

the least element of Ll(a) U Ls(cr) U L3(a). If i E Ll(a), let a be an Ri-node. 

If i E L2(a) - Ll(a) then let a be a T-node and let the successors of a each be 

Ni-nodes. Otherwise i = <e, f> E L3(a) and we let a be an l:t~,l-node. 

The definition of the lists above and the assignment of requirements to nodes 

is the usual one for constructions of this type, except for the provision in case 3 

which adds certain extra requirements to the path  below a-^gk. This addition 

is entailed by the new feature of our construction which we now describe. We 

need the following definition: 

Definition 3.2: Suppose that  a is an R~,i-node. Let r(a) denote the longest initial 

segment of (r such that  r(~r) is an Rcnode .  (r(a) exists by the construction of 

the lists above. Requirement R~,i is not assigned to a node unless requirement 

R~ has been assigned to some initial segment.) 

In usual tree arguments, we would allow a node a to act only at o-stages, stages 

at which the guesses coded by a look correct. However, for a an R~,i-node, this 

restriction does not get along well with the basic module which requires us to 

open a gap at any stage at which A permits. We cannot assume that  there are 

enough cr stages at which this happens. Thus we need to be able to open a gap 

at any stage. This contrasts with other "gap-cogap" tree constructions, where 

such gap opening was confined to o, stages. In our construction, we still will only 

be allowed to close the gap at r(cr) stages. However, we will only be able to 

appoint new followers at a stages. In the construction, this will be implemented 

by constructing a link from r(a) to o" at the stage at which we open a gap. The 

gap will be closed at a true r(c~) stage by traveling the link. The consequence 

of the more frequent gap opening is that  it is possible that  nodes a such that  

r ( a )  C a C cr do not ever again get a chance to act. Tha t  is, there are nodes 

on the "true path" which are not accessible infinitely often and so themselves 

are not "true." For such a node a,  we need to place ~ 's  requirement on the 

tree again below a. Note that  the usual tree machinery automatically does this 

replacement if a ' s  requirement has lower global priority than that  of a (Ri, Ni,  

or Rid for i > e). However, we must ensure that  this is done for requirements of 

higher global priority that  have lower local priority than ~-(~). That  is the force 

of the following definition: 

Definition 3.3: Suppose that  ~r = ~r-^gk for some k such that  c~- is an He,i- 
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node. Then a i n ju re s  RI, j if f < e and there is /3 an Rf, j -node such that  

r (a- )  C_/3 C_ a- .  

This new property of the construction also requires the T-nodes.  The function 

of a T-node a is as follows. The node/3 = a^F which follows it is an Ne-node 

for some e. Thus/3 is a t tempting to establish that  ~e(B)  ¢ A. The strategy for 

this is the typical Sacks' strategy of preserving lengths of agreement. However, a 

RLj -node  7- for r C/3 can injure this computation infinitely often by enumerating 

an infinite (recursive) sequence of traces into B. In a typical tree construction 

of this sort, this does not. present a problem since the outcome of the RAj-node 

T provides information to/3 sufficient to determine whether the set of injuries is 

infinite or not. Namely, if/3 guesses that  the outcome of v is one of the gapping 

outcomes, then/3 guesses that  T contributes all infinite recursive set to B. With 

this in mind, /~ does not believe a computation (I)e,s(Bs; x) = A~(x) unless B~ 

is correct with respect, to the hypothesized injury set. This suffices to make the 

injury set finite along the true path which is all that  we need in order to meet 

Ne. However, in our construction which follows, it is possible that  /3 sees such 

an RLj -node  7- such that  r^gk c_ /3 but yet v acts only finitely often (and the 

outcome 7- is not correct) due to the strategy of gapping described above. Thus 

a needs to know that  ~- will not contribute an infinite injury set to B. This is 

precisely what the T-node is intended to accomplish. The guess F of a is the 

guess as to which Rf, /-nodes r C_ a will actually contribute an infinite set of 

traces to B. Then/3  uses that  information to determine which computations to 

believe. It is clear that  if F is the correct guess, then/3 will succeed as in typical 

constructions. We can now say precisely which sets F are such that  aAF should 

be a successor of a T-node. 

Definition 3.4: Suppose that  a is a T-node. Then the immediate successors of a 

are exactly the nodes a - F  for each F such that  F is a subset of 

{a: a there are e, i, and k with a an Re,j-node and a^gk C_ a}. 

The next lemmas guarantee that  each infinite pa th  3' of the priority tree P T  

has enough nodes so that  all the requirements are satisfied. It  will be helpful to 

have this picture of 3' in mind. Along 3' we place Re-nodes in decreasing order of 

priority. After we place an Re-node 1- on the tree, we begin placing Re,i-nodes for 

each i. Each of the Re,i-nodes has an outcome on ~. If one of these nodes a has 

a gapping outcome on 3' (i.e. a C a"gk C 3') then this gives us a global win for 
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requirement Re. If this happens, we do three things. We restart all requirements 

Rj  for j > e by placing new Rj-nodes below 0. We also stop placing R~,k-nodes 

for any k. Finally, we start placing l:tj,k-nodes for requirements Rj,k which were 

injured by O'Agk. (Note that  each of these requirements has j < e.) Thus below 

7- there will either be finitely many R~,i-nodes ending in one with a gapping 

outcome or for every i there will be an R~,i-node a below r, necessarily with 

outcome s or w, implying that each of the subrequirements R~,i is met. The 

requirements N~ are placed in the tree at appropriate points corresponding to 

their priority relative to that of the requirements R~. We would omit the proof 

of these lemmas except that the added condition in Definition 3.1 of "injures" 

requires us to add l:t~d-nodes to the tree more often than usual constructions. 

Indeed an R~3-node a may be added because of the behavior of a requirement 

R I for f > e. However, in this case we will have f _< (e, i} so that we can still 

show that this injury happens to requirement Re,i only finitely often. 

The first of the two lemmas establishes this last fact. 

LEMMA 3.5: Suppose that a = a-^gk  is an Rf,j  node and a injures R ¢ , i .  Then 

f <_ (e, i). 

Proof." Otherwise, let a be the least counterexample and let/3 be least such that 

a injures R~,i via/3. In other words, 0 -  is an Rl, j-node for some (f, j ) , /~  is an 

R~,i-node, f > (e,i), and 

r ( a - )  c_ ¢~ c_ o -  c a--Agk = O. 

Now (e, i) < f implies that since r ( a - )  is not an R~,i-node, (e, i) ft L3 ( r (a - ) ) .  

Thus (e,i) E La(fl) implies that for some ~ with r ( a - )  C 5 C_ fi, {e,i} E 

La(a) - L3(5-) .  Thus either R~,i is injured by 6 or a is a gapping outcome 

of an Rt,m-node for l < e. In the latter case l <_ {e, i} by the properties of the 

pairing function and in the former case l ___ (e, i} by the hypothesis that  a is the 

least counterexample to this fact. Thus l < f and so f E LI(5). But then there 

must be an Rl -node  r '  such that ~ _C r '  C_ a - .  This cofftradicts the fact that 

r (a - )  c 5. | 

LEMMA 3.6: Suppose that "I is an infinite path through the priority tree. Then 

for every e E w, 

(a) there are only finitely many Re-nodes T such that r C 7, 
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(b) there are only finitely many nodes a such that a is an R~,i-node for some 

i and a^gk C 7, 

(c) for every i, there are only finitely many  Re,i-nodes a such that  a C % 

Proo~ We first prove (a) and (b) by simultaneous induction on e. Suppose then 

that  (a) and (b) are true for all i < e. By Definition 3.1, if e ¢ L l ( a - ) ,  then 

e ~ L l ( a )  unless a -  is an Ri,j node for some i < e and a = a - ^ g k  for some k. 

By (b) and the inductive hypothesis there are only finitely many such a on 7. 

For each such a there is at most one Re-node on 7. This proves (a). 

By (a) of the inductive hypothesis, let r C 7 be such that for i < e there 

are no Ri-nodes T' extending r on 7. By (b) we may also assume that  for all 

i < e there are no l~,j-nodes a extending r on 7 with gapping outcomes on 

7. Let a be such that a is an Re,i-node for some i and T c_ aAgk C "/. By 

Definition 3.1, (e , j )  ft La(a^gk)  for any j .  (It appears that we have met Re 

globally at aAgk.) Suppose for a contradiction of (b) that j and a are such that 

a C a and (e , j )  e L3(a) - L3(a- ) .  Then it must be the case that case (3) of 

Definition 3.1 applies to a -  and either a injures R~,j or a is an R/,k-node with 

a gapping outcome on 7 and f < e. The latter does not happen by the inductive 

hypothesis. If the former is true then we have that "r(a-) C a C a~gk C a - .  

But this implies that f E Ll(a"gk) and thus that there is an R/ -node  v ' such 

that  aAgk C_ r ~ C_ a - .  But then -r(a-)  D_ T' contrary to the hypothesis that  

v ( a - )  C a. (At the gapping outcome of Re,i, we restart requirement R j  and 

must first put an Rj-node on the tree before any Rj,k-node.) Thus (b) is proved. 

To prove (c), fix 7, e and i. Let r be the longest Re-node on 7 (if there are 

no Re-nodes on 7, then (c) is trivially true, otherwise r exists by (a)). By the 

proof of (b), if there is any j and Re,j-node a with a gapping outcome on 7, then 

there are no Re,l-nodes on -y extending a so (c) is proved in this case. Otherwise 

suppose that  a and a ' are two Re,i-nodes on 7 such that r C a C a ~. Then it 

must be the case that (e, i) e L3(a') so that there is ~ such that a C ~ C_ a '  and 

(e, i) E L3(~) - L3(~'). This can only be because Re,~ is injured by ~. But 

injures Re,i if j3- is an Rf,k-node for some f _< (e, i) (by the previous lemma) 

and f~ has a gapping outcome on 7. By (b) there are only finitely many such/3. 

Hence there are only finitely many such pairs a and a '  and so only finitely many 

Re,i-nodes on 7. | 

In the construction that follows, Qr denotes the version of Q being built at Re- 
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node T. To initialize a node means to cancel all followers and traces associated 

with the node. 

4. T h e  c o n s t r u c t i o n  

CONSTRUCTION. STAGE S + 1: Stage s + 1 has two steps each of which is 

executed in turn.  

STEP 1: Suppose tha t  (~ is an Re,i-node and there is an x such tha t  x is an 

active follower of (~ a t  s + 1, t(x, s) is defined, As+l[U(X,~, s)] ~ A~[u(x, ~, s)], 

and there is no link (~-(a), a )  defined a t  s tage s. 

Action: Enumera t e  t(x, s) into B,  construct  a link (~-(a), a) ,  initialize all nodes 

~/such t ha t  (~ <L % and initialize all a '  such there is a link (T(a) ,  a ' )  such tha t  

r (~ )  c a c ~'. 

STEP 2: We define T P s + I ,  the apparent  t rue pa th  a t  s tage s + 1 in substages 

below. At substage t, we define an initial segment TP( t ,  s + 1) of TP~+I .  If  

a = TP( t ,  s + 1) for some substage t of stage s + 1, we say tha t  s + 1 is a g e n u i n e  

a-s tage.  If  a C T P s + I  we say tha t  s + 1 is a a-s tage.  If  s + 1 is a a -s tage  we will 

initialize all nodes 3, with a <L % 

SUBSTAGE 0: Define TP(0 ,  s + 1) = A. (Note tha t  A is the only R0 node in 

the pr ior i ty  tree PT . )  See if s ÷ 1 is A-expansionary. T h a t  is, see i f / (A,  s) > 

max{/(A, s ' ) ,  0, n: s '  < s}, where/ (A,  s) denotes the length of agreement  between 

¢0(A)  and U0 at  s tage s, and n denotes the largest number  associated with any 

node u with T(U) = A. If  S + 1 is not A-expansionary, then set TP(1 ,  s + 1) = f 

and go to substage 1. If  s + 1 is A-expansionary, then adopt  the first case below 

which per ta ins  and then go to substage 1. 

CASE 1: There  is a link (A, u) for some node v. 

Action: Set TP(1 ,  s + 1) = u. 

CASE 2: O t h e r w i s e .  

Action: Set TP(1 ,  s + 1) = cx~. 

SUBSTAGE t-{-l: I f  I TP( t ,  s + l ) I  = s, then  let TP~+I  = TP( t ,  s + l )  and proceed 

to the next  stage. Otherwise,  let a = TP( t ,  s + 1) and adopt  the first case below 

which pertains.  
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CASE 1: a is a Re,i-node. 

SUBCASE 1.1: Wo,s N Q~(o),s ¢ 0. 

Action: Let TP( t  + 1, s + 1) = a^ f .  Initialize a if s + 1 is the first hAl-stage. 

SUBCASE 1.2: I~ , s  N Qr(o),s -- ~, and there is a link ( r ( a ) , a ) .  (This means 

that  we have just traveled the link.) Cancel the link and adopt the first subcase 

below that  applies. 

SUBCASE 1.2a: There is a realized follower x = f l ( a ,  s) such that Ur(o),s[x] ~t 

U~(o),~, [x] where s' denotes the largest genuine T(a)-stage < s. 

Action: Enumerate x into Q~(~),~+I- Let TP~+I -- aAf.  

SUBCASE 1.2b: Subcase 1.2a does not pertain and the a-gap is now an f l ( a ,  s)- 

gap. (That is, As+l[U(fl(a, s), 6, s')] ~ As, [u(fl(a,  s), a, s')] where s' denotes the 

largest genuine 7(a)-stage < s.) 

Action: Set TP( t  + 1, s ÷ 1) = a^g2. Redefine t(y, s + 1) for the active followers 

y of a so that t(y, s ÷ 1) is fresh and exceeds s + 1. (And hence exceeds all uses 

at this stage.) 

SUBCASE 1.2C: As in subcase 1.2b except that the a-gap is f2(a,  s)-gap. (Thus 

As+l[u(f2(a,s) ,a,s ' )]  ¢ A~,[u(f2(a,s),a,s')] but As+l[u( f l (a ,s) ,a ,s ' )]  

= A~,[u(fl(a,  s), a, s')] where s I denotes the largest genuine r(a)-stage < s.) 

Action: Set TP( t  ÷ 1, s ÷ 1) = a^gl. Redefine t ( f 2 ( a , s ÷  1),s ÷ 1) -- 

t ( f2(a,  s), s ÷ 1) to be large and fresh. 

SUBCASE 1.2d: We are not in a a-gap at all. (This will mean that the link is 

there for the sake of defining a r-use for f2(a,  s).) 

Action: Define t ( f2(a,  s), s + l )  to be large and fresh. Set T P ( t + I ,  s + l )  = a^w. 

SUBCASE 1.3: Neither subcase 1.2 nor subcase 1.1 pertains but s + l  is a genuine 

r ( a )  stage. 

SUBCASE 1.3a: f2 (a , s )  E W~,s. 

Action: Define f l ( a , s  ÷ 1) -- f 2 (a , s )  and declare that  f 2 (a , s  ÷ 1) T- Set 

TP( t  ÷ 1, s + 1) = a^g3. 
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SUBChSE 1.3b: f2 (a , s )  $. 

Action: Define f2(a,  s + 1) to be large and fresh. Construct a link (7-(a), a). 

Set TPs+I = a and proceed to the next stage. 

SUBCASE 1.3c: f2 (a , s )  J. but f2 (a , s )  • Wo,s. 

Action: Set TP( t  + 1, s + 1) = hAW. 

SUBCASE 1.4: None of Subcases 1.1, 1.2 or 1.3 hold. 

Action: Set TP( t  + 1, s + 1) = a^w. 

CASE 2: a = TP(t ,  s + 1) is a T-node. 

Action: For each outcome F of a, let s(F) denote the maximum of 0 and the 

most recent genuine a^F-stage, if any. Find the leftmost outcome F which has 

appeared correct since s(F).  That  is, for each v E F,  since stage s(F) there has 

been a genuine v-stage. (Note that this method of determining F implies that if 

there are infinitely many a^F1 stages and aAF2 stages then there are infinitely 

many a ^ F  stages for some F _D F1 tA F2.) Define TP( t  + 1, s + 1) = a^F.  

CASE 3: a = TP(t ,  s + 1) is a Ne-node. 

Action: This will be a Sacks-type requirement implemented on a tree. Note 

that the predecessor v of a is a T-node and a = v ^ F  for some set F of Re,i- 

nodes "~ such that  "~ C_ a. (F  represents a guess as to which Re,i-nodes are visited 

infinitely often and so can injure the computation at a infinitely often.) Compute 

the a-correct length of agreement between gY~,s(Bs; x) and A8 as follows. We will 

say that a computation gyo,s(B~; x) ~ is a-correct if the use u --- u(ggo,~(B~; x)) of 

the computation satisfies the following. For all "y E F,  if "Y^g2 C a or "f'g3 C a 

then t ( f l ( %  s), s) > u, and if ~/^gl C_ a we have t ( f2(% s), s) > u. (In other 

words, a computation looks correct to a if it has been cleared of all traces that  a 

believes will eventually enter B based on the guesses given by the intial segments 

of a.) Let i be the a-correct length of agreement and let TP( t  + 1, s ÷ 1) = i + 1. 

CASE 4: a = TP(t ,  s + 1) is a Re-node. See if s + 1 is a-expansionary. If s + 1 

is not a-expansionary at substage t, then let TP( t  + 1, s + 1) = aAf .  If s + 1 is 

a-expansionary at substage t, then adopt the first subcase below to pertain. 

SUBCASE 4.1: There is a link (a, v) for some node v. 

Action: Let TP( t  + 1, s + 1) = v. 
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SUBCASE 4.2: Otherwise.  

Action: Set T P ( t  + 1, s + 1) = a^c<~. 

END OF CONSTRUCTION. 

Isr. J. Math. 

5. T h e  v e r i f i c a t i o n  

We define T P  the t rue pa th  to be the leftmost  pa th  visited infinitely often. (As 

usual, we define this inductively via: A C T P  and for all v, if v C TP ,  then for r 

an outcome of u, v^ r  C T P  iff there are infinitely many  v^r -s tages  and,  for all 

r ~ <L r ,  there are only finitely many  u^r~-stages.) We define the genuine t rue  

pa th  G T P  to be  those a C T P  such tha t  addit ionally there are infinitely m a n y  

genuine a-stages.  Now for this construction,  it is not a t  all clear tha t  G T P  is 

infinite. In  fact, it is not  obvious tha t  T P  is infinite because of the w* ordering 

of the outcomes  a t  an Ne-node.  The  crucial l emma  is the following: 

LEMMA 5.1 (Golden P a t h  Lemma) :  G T P  is infinite. Furthermore, ira is on 

G T P  and is a Ne-node, then Ne is satisfied. 

Proof: Obviously, A is on G T P .  Now suppose tha t  a is on G T P .  We need to 

show tha t  for some 7 _D a ,  7 is on G T P .  

Because a is on G T P ,  there is a stage So such tha t  if s _> so is a 7-s tage and 

7 --<L a ,  then  7 C_ a .  Now after  s tage so, no node /3  left of  a wi thout  a follower 

a t  s tage so will e v e r  get a follower, since followers are appoin ted  a t  genuine 13- 

stages. Hence there are at  most  a fixed finite set of nodes left of  a which can 

ever be at  the ends of links. Suppose t h a t / 3  is left of a .  Then  after  s tage so if 

there is a link to/3 ,  it is ei ther pe rmanen t  but  never traveled, or it is cancelled 

and the node fl is initialized. (If a link is cancelled then  the b o t t o m  node is 

initialized.) Therefore  we may  also assume tha t  for all s _> So and a l l /3  <L a 

there are no links wi th  b o t t o m  fl created at  s tage s. Also, there may  be a finite 

set of nodes 7/ C a such tha t  ~] is on T P  but  not G T P .  We will assume tha t  

such r] are not visited after s tage So. If  a node/3  is such tha t  ~-(fl) = 7/for such 

an  y, no follower can be appointed for /3  after  so. (Followers for fl can only be  

appoin ted  at  genuine 77 stages.) Therefore we can assume also t ha t  after  s tage So 

there are no links constructed with tops ~ C_ a not on G T P .  

The  a rgument  now divides into four cases, according to the type  of the node 

a.  Suppose first t ha t  a is a T-node .  Then  whenever s is a genuine a-s tage ,  s is 
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a genuine aAF-stage for some F. Since there are only finitely many outcomes F 

of a,  for some F, aAF is on GTP.  

Suppose next that  a is a Re,~-node. Since there are only finitely many outcomes 

of a,  we need only argue that  at infinitely many genuine a-stages, we play some 

outcome of a. The only situation in which we do not play an outcome of a at a 

genuine a-stage, is when we create a link (T, a) in Subcase 1.3b of the construction 

(when f2(a ,  s) is undefined). This link remains in place until either it is cancelled, 

or we find a genuine v-expansionary stage with the length above f2(a,  s). In the 

latter case, we will play a^w at the relevant genuine T-expansionary stage. In 

the former case suppose that  we cancel the link ( T, a) before we get to traverse 

it. Now by choice of So, the link can only be cancelled (i) by some node a <L a 

or (ii) by some ~ C a at the same time as constructing a link (T, a)  iwhere of 

course this is the same V = v i a ) ) .  (The point is that  only the creation of new 

links can cancel the link (V, a).)  Case (i) is impossible since we have assumed 

that  there will be no links with bo t toms/3  <L a created after stage So. And 

<L a. Therefore case (ii) holds. Notice that  the link (V, ~) remains in place 

for the same reason until either it is traversed or replaced by some (T, (~) with 

cd C (~. It  follows that  for some ~ C a we will eventually traverse (V, ~]) and 

play an outcome of ~. Now by choice of stage So, we cannot play an outcome 

77 ̂ u  <L a. Therefore, since v(a) = V(y) it can only be that  u E {f ,w}.  (See 

Definition 3.1.) However, after we traverse a link such as (v, ~), we can only play 

an outcome from {f ,  gl,g2,g3}. It follows that  we play the outcome f of ~ and 

therefore y never again receives attention. In particular there is no link with 

bo t tom ~ ever created after the stage we traverse iv, 7). Therefore the next t ime 

we create a link (~-, a)  that  is cancelled by the creation of a link (V, (~) for some 

(~ C a, we know that  ~ ¢ ~?. There are only finitely many possible such nodes c~ 

and hence from some stage on, every link of the form i T, a) created will never be 

destroyed, and will be eventually traversed. But when the link (r, a)  is traversed, 

an outcome of a is played. Since we play outcomes of a infinitely often, and a 

has only finitely many outcomes to choose from, some outcome of a is on GTP.  

Suppose then that  a is a Ne-node, devoted to the requirement that  ~ ( B )  ¢ A. 

Each time we have a genuine a-stage, then we must have a genuine a^ j - s tage  

for some outcome j E w. We will argue that  there is a greatest number j such 

that  outcome j is visited infinitely often. Thus suppose not. Fix j E w and let 

s = s(j)  > So and j '  > j be such that  s is the first genuine a~y-s tage .  Such 
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a j t  exists by our hypothesis. By the cancellation process (and the w* priori ty 

ordering of the outcomes of a)  it follows that  there are no nodes below a with any 

followers or traces at stage s ( j ) .  Now the predecessor ~ of a is a T -node  and is 

also on GTP.  Therefore a = "y^F such that  the information in F is correct. Tha t  

is, for all Re,i-nodes v^gj  C a, if v is on GTP,  then v E F.  In particular,  the 

a-correct  computa t ions  at stage s = s ( j )  will never be injured by any trace which 

is already appointed by stage s. Furthermore,  all traces appointed after stage s 

cannot  injure these computat ions.  Therefore, it follows tha t  the g2e(Bs(j);jP~) - 

computa t ions  are correct for all j "  <_ j~. Now a'  la'  Sacks, we see that  A is 

recursive. This a rgument  shows both  that  some outcome a " j  must  be on G T P  

and also tha t  Ne is met  at a.  

To complete the proof  of the lemma, we need consider the case tha t  a is a 

Re-node.  Now as a has only two outcomes, one nmst be on TP.  If  a A f  is on T P  

then it is on GTP.  So suppose that  a ^ c c  is on TP,  but  not GTP.  Then  after 

some stage sl > s0, at each genuine a-s tage we either play outcome f or we have 

a a^c~-s tage  tha t  is not  a genuine a^oe-stage.  

Let s2 > sl be such a a^oc-stage.  It  can only be tha t  there is a link (a, v) 

traversed at stage s2. To argue that  G T P  exists we need argue that  in these 

circumstances,  there is some ~, on T P  to which a links infinitely often. The  point  

is this. If  a links to a node u at a stage s3 > sl,  then there is no node y with 

v(r/) = a,  and such tha t  ~ gets a (new) follower at stage s3. Followers to nodes 

r / w i t h  r(~l) = a are appointed only at genuine  a^~ - s t ages .  Since a can only 

link to nodes ~, with followers and such tha t  7-(v) = a,  it follows tha t  after stage 

sl ,  a can only link to one of  a finite number  of nodes. Therefore a will link to 

some highest priority v infinitely often. Since v 's  follower is never cancelled, it 

can only be tha t  ~ is on G T P .  Thus a has an extension on G T P .  This completes 

the proof  of the lemma. | 

LEMMA 5.2 (Golden Rule Lemma):  For every e E w 

(a) there is an Re-node  t3 on G T P  

(b) there is an Ne-node  fl on G T P  

(c) i f  T be the longest Re -node  on G T P  (which exists  by (a) and L e m m a  3.6), 

and i f  TAC~ is on T P  either 

(i) there exists i E o; and a D T an Re, i -node on G T P  such that  a^gk is 

on G T P  for some k or  
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(ii) for every i 6 w there is Re,i-node a D 7 on G T P .  

Proof'. To prove (a) and (b), let /3 be the longest Re-node  (Ne-node) on T P  

which exists by Lemma 3.6. We claim tha t  ;3 is on GTP.  Suppose otherwise. 

Then  it must  be the case that  there are v and a on G T P  such tha t  T C /3 C a 

and the link (~-, a)  is traversed at infinitely many T stages. This implies tha t  

aAgk is on G T P  for some k. Now r is an R f -node for some f and a an Rf , j -node  

for some k. Now f < e ( f  _< e) by the way tha t  requirements are assigned to 

the paths  of the tree. (Since /3 is an Re-node or Ne-node,  an R f - n o d e  must  

be placed on the tree af ter /3 before any R / j - n o d e  contradict ing the claim tha t  

v = T(a) C /3.) But  then by the construct ion of the tree, there are Re-nodes  

(Ne-nodes) on T P  above aAgk contradicting the hypothesis t ha t /3  is the longest 

such. 

To prove (c), let ~- be the last Re-node on T P  which by the proof  above is 

also on G T P .  Suppose first tha t  there is an i 6 w and a an Re,i-node such tha t  

a~gk is on T P  for some k. We claim that  a^gk is on GTP.  Suppose not. Then  

as in the proof  of (a), there is v '  and a' on G T P  which are R l-  and Rl,j-nodes 

respectively such tha t  V' C aAgk C ~'. Again, we must  have f < e because 

7 C a,  but  as in (a) and (b) this implies tha t  7 is not the last Re-node  on TP.  

Supposing there is no such i, it is clear by the definition of list L3 tha t  for every 

i there is an Re,i-node a D T on TP.  Given i, let a D 7- be the longest Re,i-node 

extending a on TP.  We argue tha t  a is in fact on the GTP.  Again, suppose not. 

As before, there are T' and a' on G T P  which are R l -  and Rf , / -nodes  respectively 

such tha t  T' C a C a '  and a'^gk is on GTP.  Since T is the last Re-node  on TP,  

it must  be the case tha t  f > e. But  then by the definition of injures, we have 

tha t  a'-gk injures Re,i and so by the construct ion of the lists, a is not  the last 

Re,i-node on TP.  This contradicts the assumption so tha t  a is in fact on G T P .  

| 

LEMMA 5.3: Suppose that T^O0 is on GTP and that ~- is the last Re-node on 

GTP. Then Qr <_T C.r. 

Proof" Since there are infinitely many genuine ¢ stages, each z gap, opened via 

a link (7, a), is either dosed or cancelled by the subsequent r-expansionary stage. 

Thus, if we find the maximal T-expansionary stage s where Us[x] = U[x], it must 

be tha t  x 6 Q~ iff x 6 L~,s+l. | 
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LEMMA 5.4: Under the hypotheses of Lemma 5.3, Q~ <_T B. 

Proof: Use the same proof as Lemma 2.3, modified as in Lemma 5.3. | 

LEMMA 5.5 (Truth of Outcome Lemma): If  ¢~(A) = U~, then U~ is recursive or 

Q~ ¢ Wi for all i, where r is the longest node devoted to R~ on GTP.  

Proof'. Let a _D r^ec  have R~,i devoted to a and suppose that  a is on GTP.  

Now every gap that  is opened from r to a is eventually traversed or cancelled. 

Cancellation only happens if we are left of a, and this can only happen finitely 

often as a is on GTP.  Thus, after some stage sl,  every link (r, a) is eventually 

traversed. Clearly if a^w is on GTP,  then since a is only initialized finitely often, 

it can only be that  some follower of g is never realized. Hence Wi ¢ Qr in that  

case as with the case that  a ^ f  is on GTP.  So suppose that  aAgj is on GTP.  Then 

the argument is the same as for Lemma 2.4. Each time u(f2(a, s), s) is permit ted 

by A we open a gap. This gap is closed at the next genuine rAoc-stage. Since U 

does not change in the gap (by the outcome), we will reset t( f2(a, s), s), ready 

for the next gap. Therefore we can use the process of Lemma 2.3 to recursively 

compute U. | 
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